Package: gwrpvr 1.0
gwrpvr: Genome-Wide Regression P-Value (Gwrpv)
Computes the sample probability value (p-value) for the estimated coefficient from a standard genome-wide univariate regression. It computes the exact finite-sample p-value under the assumption that the measured phenotype (the dependent variable in the regression) has a known Bernoulli-normal mixture distribution. Finite-sample genome-wide regression p-values (Gwrpv) with a non-normally distributed phenotype (Gregory Connor and Michael O'Neill, bioRxiv 204727 <doi:10.1101/204727>).
Authors:
gwrpvr_1.0.tar.gz
gwrpvr_1.0.zip(r-4.5)gwrpvr_1.0.zip(r-4.4)gwrpvr_1.0.zip(r-4.3)
gwrpvr_1.0.tgz(r-4.4-any)gwrpvr_1.0.tgz(r-4.3-any)
gwrpvr_1.0.tar.gz(r-4.5-noble)gwrpvr_1.0.tar.gz(r-4.4-noble)
gwrpvr_1.0.tgz(r-4.4-emscripten)gwrpvr_1.0.tgz(r-4.3-emscripten)
gwrpvr.pdf |gwrpvr.html✨
gwrpvr/json (API)
# Install 'gwrpvr' in R: |
install.packages('gwrpvr', repos = c('https://mfjoneill.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/mfjoneill/gwrpvr/issues
- regresults - Regresults: sample data
Last updated 3 years agofrom:b6853a1b5c. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 06 2024 |
R-4.5-win | NOTE | Nov 06 2024 |
R-4.5-linux | NOTE | Nov 06 2024 |
R-4.4-win | NOTE | Nov 06 2024 |
R-4.4-mac | NOTE | Nov 06 2024 |
R-4.3-win | NOTE | Nov 06 2024 |
R-4.3-mac | NOTE | Nov 06 2024 |
Exports:calc_pvalueclose_to_normalgwrpvgwrpv_batchhighlowloop_calc_pvalue
Dependencies:
Readme and manuals
Help Manual
Help page | Topics |
---|---|
calc_pvalue() | calc_pvalue |
This is a CLT-linked run-time control. | close_to_normal |
Genome-Wide Regression P-Value (gwrpv) in R | gwrpv |
Batch computation of a list of pvalues of GWA regression beta statistics using a bernoulli-normal mixture distribution | gwrpv_batch |
gwrpvr: A package for calculating Genome-Wide Regression P-Values (gwrpv) in R | gwrpvr-package gwrpvr |
highlow() | highlow |
loop_calc_pvalue() | loop_calc_pvalue |
regresults: sample data | regresults |